Rotamers and Isomers in the Fulgide Series. Part 1. Stereochemistry and Conformational Analysis of Bis-(3,4-dimethoxybenzylidene)succinic Anhydrides by X-Ray Crystallography and Molecular Mechanics

Jan C. A. Boeyens,* Louis Denner, and Guido W. Perold
Department of Chemistry, University of the Witwatersrand, Wits, 2050 South Africa

Abstract

Conformational analysis of bis-(3,4-dimethoxybenzylidene)succinic anhydride suggests that in addition to a Z, Z-isomer, the E, E-isomer of this diarylfulgide occurs as three distinct relatively freely interconvertible chiral rotamers and their enantiomers. The E, Z-isomer undergoes facile dehydrogenation to form an aryInaphthalene derivative. Crystals were obtained of a symmetrical E, E-rotamer in two forms, the Z, Z-isomer and the aryInaphthalene derivative. X-Ray structures of these crystalline forms are reported. The conformations of the other rotamers were simulated by molecular mechanics, using an empirical force-field based on the observed structure of the symmetrical E, E-rotamer, described here. The aromatic rings of the E, E - isomers are eclipsed and under severe strain, which inhibits free rotation. Packing energy promotes the crystallization of one of the possible E, E-rotamers only and has a marked effect on the orientation of the methoxy substituents.

The fulgides ${ }^{1}$ (dimethylenesuccinic anhydrides or 3,4-dimethyl-enedihydrofuran- 2,5 -diones) are typically highly crystalline compounds which in many cases are thermochromic ${ }^{2}$ and phototropic. ${ }^{3-5}$ In the case of E, E-diarylfulgides such as (1) they can undergo dehydrogenation on irradiation or on strong

(1)

(4)
(3)

heating to afford 1-arylnaphthalene-2,3-dicarboxylic anhydrides (4). This sequence has been long and fruitfully studied ${ }^{6}$ and has been shown ${ }^{6}$ to involve isomerization to an E, Z-isomer (2) followed by thermal disrotatory and photochemical conrotatory changes leading via $1,5-\mathrm{H}$ shifts to 1,2 -dihydronaphthalene intermediates such as (3). In the case of (E, E)-bis-(p-methoxybenzylidene)succinic anhydride, irradiation has been reported ${ }^{7}$ to afford both the E, Z - and Z, Z-isomers, and we found ${ }^{8}$ that rotameric isomerism can occur in the case of the E, E-isomer.
For the known bis-(3,4-dimethoxybenzylidene)succinic anhydride $\left[1 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right]^{9}$ we found ${ }^{10}$ that the additional chemical activation due to the methoxy groups leads to ready formation of the naphthalene anhydride $\left[4 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right]$ by either warming (1) in solution, or chromatographing it over silica gel. We could now arrive at the exact description of this molecule by X-ray diffraction analysis (below). In the same manner we were able to demonstrate the E, E-configuration of anhydride $\left[1 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right]$ and also the orientation of the methoxy groups as shown (6). The formation of the naphthalenedicarboxylic anhydride (4) involves isomerization of one double bond of (1). We found that under the mild conditions for these changes, isomerization of both double bonds also occurs to afford the Z, Z-anhydride (5) in low yield as deep orange needles, m.p. $205-207^{\circ} \mathrm{C}$. This behaviour is in contrast with that of other diarylfulgides where irradiation or strong heating is required to effect such changes. ${ }^{7}$
X-Ray diffraction analysis of the Z, Z-isomer (5) afforded its structure and showed that the planes of the carbonyl groups and adjacent aromatic rings are nearly parallel. Delocalization of the π-systems of these groups is therefore favoured and this can explain the very intense long-wave absorption of this isomer, relative to the E, E-isomer (6) $\left[\lambda(\varepsilon)\left(\mathrm{CHCl}_{3}-\mathrm{EtOH}, 1: 1 \mathrm{v} / \mathrm{v}\right)\right.$ for (6): $441 \mathrm{~nm}(12000)$ and 326 nm (16000); for (5): 446 nm (20000) and $345 \mathrm{~nm}(15000)$]. The auxochromic shift is thus for the transition from E, E to Z, Z, as opposed to the auxochromic shift normally expected. ${ }^{11}$ We have encountered this effect also in the case of 3,4-dimethoxybenzylidenesuccinic anhydride ${ }^{12}$ and it has been reported for the case of p-methoxybenzylidenesuccinic anhydride. ${ }^{13}$
The n.m.r. characteristics of these fulgides reflect the differences arising from the relationships between the aromatic

Table 1. Semiquantitative ratios of summed intensities of methoxy nuclear magnetic resonances ${ }^{a}$ of the isomeric anhydrides in CDCl_{3} solution at 200 MHz (Bruker AC 200 FT spectrometer)

Starting from E, E-isomer Starting from Z, Z-isomer (6)
(5)

Products
Conditions
Fresh solution $100 \quad 100$
Degassed
solution
kept $1 \mathrm{~h} / 24^{\circ} \mathrm{C} \quad 74 \quad 11 \quad 12 \quad-\quad 3$
kept $3 \mathrm{~h} / 24^{\circ} \mathrm{C}$
kept $3 \mathrm{~h} / 73^{\circ} \mathrm{C}$
kept $5 \mathrm{~h} / 73^{\circ} \mathrm{C}$
kept $11 \mathrm{~h} / 73^{\circ} \mathrm{C}$
spread pair of singlets appeared at $\delta 3.92$ and $3.76(=w)$. These results are in Table 1 and are regarded as semiquantitive and indicative. The E, E - and Z, Z-anhydrides thus move into equilibrium with each other to give the same mixture from either side.

The (y) pair of methoxy group resonances may be ascribed to the methoxy groups on an aromatic ring close to a carbonyl group, and the (x) pair of signals to methoxy groups on an aromatic ring overlaying another centre of anisotropy such as a double bond or another aromatic ring. Table 1 furthermore shows that the concentrations of the (x) and the (y) species effectively remain equal at all levels. They may therefore be jointly ascribed to the E, Z-anhydride $\left[2 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right]$. We can, therefore, follow the formation of the E, Z-anhydride in oxygen-free solution. On long continued runs a superimposed doublet of doublets centred at $\delta 5.0(J c a .5 \mathrm{~Hz})$ emerged. Such resonances have been found for a dihydronaphthalene intermediates such as (3). ${ }^{6}$

This equilibration was carried out on the preparative scale starting with pure E, E-anhydride (6). After prolonged heating (see Experimental section) the mixture was worked up in the normal manner with exposure to air. As in an earlier report ${ }^{10}$ the main product isolated was the aromatized naphthalene anhydride $\left[4 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right]$.

The further isomer (w) that appears on continued heating, with its methoxy group resonances as a spread pair at $\delta / 3.92$ and 3.76 could then have a 3,4-dimethoxyphenyl ring overlaying another aromatic ring, as in the E, E-anhydride (6). We have investigated the possibility of the separate existence of rotamers of the E, E-anhydride (6) and we demonstrate (below) that a molecular energy minimum for such a rotamer can be found by calculation. We therefore ascribe this pair of methoxy group resonances to a rotomer such as (9).

Change of solvent had a marked effect on the equilibration of the E, E - and Z, Z-anhydrides. Thus anhydride (6) kept for 11 days in acetonitrile solution at $60^{\circ} \mathrm{C}$ gave 68% recovery, on crystallization from acetonitrile, of a solvated form of (6) as pure yellow flat needles, m.p. ca. $100^{\circ} \mathrm{C}$ while changing to the unsolvated form which crystallized on the hot-stage and then finally melted at $174^{\circ} \mathrm{C}$ as for the latter. These crystals were satisfactory for X-ray analysis which demonstrated the E, E configuration of the solvated molecules in the crystal. Fractional crystallization of the mother liquor afforded the Z, Z anhydride (5) in low yield (4%).

Irradiation at 366 nm of the E, E-anhydride (6) in acetone solution gave recovery of the naphthalenedicarboxylic anhydride $\left[4 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right]$ in 14% yield. When the parent fulgenic acid (7) was similarly irradiated it showed, by silylation/g.l.c. analysis, part conversion into products with less volatile silyl esters: for the starting material, $\mathrm{ET}_{197} 269^{\circ} \mathrm{C}$ (99%), and for the product mixture, ET $197269^{\circ} \mathrm{C}(73 \%)$ and $\mathrm{ET}_{197} 274^{\circ} \mathrm{C}(25 \%)$. Chromatography of the recovered mixture over silica gel gave major fractions (72%) with constituents at $\mathrm{ET}_{197} 269^{\circ} \mathrm{C}(68 \%)$ and $\mathrm{ET}_{197} 274^{\circ} \mathrm{C}(26 \%)$. Cyclization with acetyl chloride and fractional crystallization of the product afforded only the Z, Z-anhydride (5) in 8% yield overall.

When the fulgenic acid (7) was irradiated as above for 24 h , and the product dehydrated as before, only the dehydrogenated naphthalenedicarboxylic anhydride $\left[4 ; \quad \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right]$ could be obtained in crystalline form in 19% yield.

Experimental

Measurements routinely involved Kofler micro hot-stage (m.p.), Pye Unicam SP300 (i.r. for dispersions in KBr), Unicam SP1800 (u.v.-vis), Varian-MAT CH7 (m.s.), Bruker WP 80 MHz FT spectrometer (n.m.r. in deuteriochloroform solutions), and Pye Unicam GCD chromatograph (g.l.c.). T.l.c. was on pre-
coated silica gel plates (Merck F254). Analytical g.l.c. was over a column ($1.4 \times 0.0026 \mathrm{~m}$) of $\mathrm{OV} 17(1 \%$ on Anakrom Q) with nitrogen as carrier gas at $24 \mathrm{ml} \mathrm{min}^{-1}$, all runs were programmed at $8^{\circ} \mathrm{C} \mathrm{min}^{-1}$, injector and detector ports were at $300^{\circ} \mathrm{C}$, and emergent peak temperatures (ET) were read from the oven temperature and are recorded as ET (starting temperature in ${ }^{\circ} \mathrm{C}$). Approximate product distributions were calculated on peak heights. ${ }^{14}$ Irradiation at 366 nm was done with a medium-pressure mercury lamp (Applied Photophysics model $3010,125 \mathrm{~W}$) used in a water-cooled Pyrex well.

Bis-(3,4-dimethoxybenzylidene)succinic Acid (7).-This compound was prepared by slow addition of diethyl succinate (1 $\mathrm{mol})$ and veratraldehyde (2 mol) together in toluene solution to a stirred suspension of sodium hydride (2 mol) in toluene. The crude acids in acetonitrile afforded the less soluble diacid (7) which was leached out four times with hot butanone to give fine yellow grains, m.p. $213-216^{\circ} \mathrm{C}$ (decomp.). [lit., ${ }^{9} 220^{\circ} \mathrm{C}$ (decomp.)], purity by silylation/g.l.c. 99%, $\mathrm{ET}_{197} 269^{\circ} \mathrm{C}$, in 25% recovery. Its anhydride (6) had m.p. $173^{\circ} \mathrm{C}^{9,10}$ and slow crystallization from acetone solution afforded ruby hexagonal prisms which were suitable for X-ray diffraction studies. This established structure (6) in detail and confirmed the E, E configuration.
(Z,Z)-Bis-(3,4-dimethoxybenzylidene)succinic Anhydride(5).This compound was obtained by keeping the E, E-anhydride $(6)^{9}(50 \mathrm{mg})$ in acetone (5 ml) on silica gel (2 g) for 16 h at $25^{\circ} \mathrm{C}$. The product was washed out with acetone $(30 \mathrm{ml})$ through a small bed of silica gel. It was obtained as an orange gum (44 mg) from acetone (0.4 ml) and then from acetonitrile-dimethylformamide ($5: 1 \mathrm{v} / \mathrm{v}$) to give the Z, Z-anhydride (5), m.p. 205$207^{\circ} \mathrm{C}(3 \mathrm{mg})$. It was repeatably recovered by chromatography of the crude products from different runs over silica gel in benzene-acetic acid ($9: 1 \mathrm{v} / \mathrm{v}$) and by crystallizing combined (t.l.c.) fractions as above (M^{+}Found: 396.124; $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{7}$ requires 396.121); $\lambda_{\text {max. }}\left(\mathrm{CHCl}_{3}-\mathrm{EtOH}, 1: 1 \mathrm{v} / \mathrm{v}\right) 446(\varepsilon 20000)$ and $345 \mathrm{~nm}(15000)$; $\bar{v}_{\text {max. }} 1825,1790$ and $1765(\mathrm{C}=\mathrm{O})$, and $1020 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{C}) ; \delta(250 \mathrm{MHz}) 8.25(2 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, \mathrm{ArH})$, 7.51 (2 H , dd, $J 2$ and $8 \mathrm{~Hz}, \mathrm{ArH}$), 7.35 (2 H , s, olefinic), 6.95 (2 $\mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{ArH}), 4.01(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $3.99(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; m / z$ $396\left(M^{+}, 100 \%\right)$ and $138(66 \%)$. A fresh 1% solution of anhydride (5) in dimethylformamide on g.l.c. showed major components at $\mathrm{ET}_{238} 279^{\circ} \mathrm{C}(20 \%)$ and $305{ }^{\circ} \mathrm{C}(75 \%)$ while after 2 h at $102{ }^{\circ} \mathrm{C}$ it showed peaks at $\mathrm{ET}_{238} 279^{\circ} \mathrm{C}(5 \%)$ and $305^{\circ} \mathrm{C}(92 \%)$ as for anhydride (6). ${ }^{10}$

6,7-Dimethoxy-1-(3,4-dimethoxyphenyl)naphthalene-2,3dicarboxylic Anhydride $\left[4 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right]$ from Anhydride (5).-(a) Anhydride (5) (104 mg crude) in acetone (3 ml) was dried on silica gel (1.5 g). The free-flowing powder was kept in a flask stoppered with cotton wool for 19 h at $52^{\circ} \mathrm{C}$, loaded onto a column of silica gel (40 g), and chromatographed in benzeneacetic ($9: 1 \mathrm{v} / \mathrm{v}$). Front running fractions (42 mg) yielded unchanged anhydride (5) $(5 \mathrm{mg})$, flat orange needles as before; δ $(80 \mathrm{MHz}) 8.23(2 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}), 7.50(2 \mathrm{H}$, dd, $J 2$ and 8 Hz$), 7.34$ $(2 \mathrm{H}, \mathrm{s}), 6.93(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 4.00(6 \mathrm{H}, \mathrm{s})$, and $3.97(6 \mathrm{H}, \mathrm{s}) ; m / z$ $396\left(M^{+}, 100 \%\right)$ and 138 (94). Later fractions (40 mg) from acetone afforded the naphthalenedicarboxylic anhydride [4; $\left.\mathrm{R}=3,4-(\mathrm{MeO})_{2}\right]$ as micro-crystalline grains $(9 \mathrm{mg})$, m.p. $317^{\circ} \mathrm{C}$ after recrystallization in rhombs on the hot stage around $300^{\circ} \mathrm{C}$, and identical with the product reported earlier. ${ }^{10}$
(b) Anhydride (5) $(5 \mathrm{mg})$ and acetonitrile $(0.3 \mathrm{ml})$ were sealed in a tube under nitrogen at 0.5 Torr. On quickly warming the intensely orange solution, its colour changed to a light lemon shade at $170^{\circ} \mathrm{C}$. After brief heating to $250^{\circ} \mathrm{C}$ and then cooling, glistening microscopic rhombs of the naphthalenedicarboxylic anhydride $\left[4 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right](3 \mathrm{mg})$ were deposited,
m.p. $315-317^{\circ} \mathrm{C}$ as above, with i.r. absorption and m.s. identical with that of the earlier preparation. The characteristic m.p. behaviour of this compound had been noted before ${ }^{15}$ and was observed in all preparations of it.

The anhydride $\left[4 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right]$ was always obtained as light coloured grains or small scales. A single crystal for X-ray diffraction analysis was obtained by sealing it (1 mg) in a Pyrex tube together with acetonitrile ($100 \mu \mathrm{l})$ and dimethylformamide $(2 \mu \mathrm{l})$, heating once to $200^{\circ} \mathrm{C}$, and then subjecting it to repeated cycles of heating to $80^{\circ} \mathrm{C}$ followed by slow cooling to room temperature over a period of 17 days. The crystals were then fairly substantial platelets.

Preparative Isomerization of E,E-Bis-(3,4-dimethoxybenzylidene)succinic Anhydride (6) in Solution.-The E, E-anhydride (6) $(402 \mathrm{mg})$ in chloroform (10 ml) in a stout-walled tube was degassed by cycles of freezing in liquid nitrogen at 0.05 Torr followed by thawing. After sealing it was heated at $73^{\circ} \mathrm{C}$ for 7 h . The product recovered on evaporation was dissolved in acetonitrile (10 ml), degassed as before, and the sealed tube heated at $103^{\circ} \mathrm{C}$ for 88 h . The dried product heated in acetone (3 ml) gave yellow grains (101 mg) of the substituted naphthalene anhydride $\left[4 ; \quad R=3,4-(\mathrm{MeO})_{2}\right]$, m.p. $314-316^{\circ} \mathrm{C}$ and behaviour as before.

Solvated E,E-Anhydride (6).—The E,E-anhydride (6) (304 mg) in acetonitrile (15 ml) was heated, with limited access of air, at $60^{\circ} \mathrm{C}$ for 11 days. The solvent was evaporated off until 4 ml remained; yellow pointed needles crystallized (207 mg), which on two-fold recrystallization from acetonitrile did not change, m.p. ca. $100^{\circ} \mathrm{C}$, and solidified to the unsolvated form as red plates which finally melted at $174^{\circ} \mathrm{C}$. These crystals were suitable for X-ray work and were thus shown to have an unchanged E, E-configuration.

Fractional crystallization of the foregoing mother liquor from acetonitrile gave a low yield of the Z, Z-anhydride (5) (11 $\mathrm{mg}, 3 \%$), m.p. $202-206{ }^{\circ} \mathrm{C} ; 88.23$ (d, $J 2 \mathrm{~Hz}$), 7.50 (dd, $J 2$ and 8 $\mathrm{Hz}), 7.33(\mathrm{~s}), 6.93(\mathrm{~d}, J 8 \mathrm{~Hz}), 3.99(\mathrm{~s})$ and $3.97(\mathrm{~s})$ as before.

Irradiation of the E,E-Anhydride (6).-The E,E-anhydride (6) $(403 \mathrm{mg})$ in acetone (50 ml) was irradiated at 366 nm for 6 h . Concentration of the solution afforded the naphthalenedicarboxylic anhydride $\left[4 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right](57 \mathrm{mg} 14 \%)$, m.p. $308-$ $312^{\circ} \mathrm{C}$ and behaviour as before.

Irradiation of Fulgenic Acid (7) at 366 nm.-(a) For 3 h. Fulgenic acid (7) $(400 \mathrm{mg})$ in acetone (50 ml) was irradiated for 3 h , when the starting material with $\mathrm{ET}_{197} 268^{\circ} \mathrm{C}(99 \%)$ had changed to a mixture of acids with $\mathrm{ET}_{197} 269^{\circ} \mathrm{C}(73 \%)$ and with $\mathrm{ET}_{197} 274^{\circ} \mathrm{C}(25 \%)$. This mixture was spread on silica gel (2.2 g) and chromatographed over silica gel (100 g) in benzene-ethyl acetate-acetic acid ($8: 5: 1, \mathrm{v} / \mathrm{v}$). Major fractions (286 mg) analysed for $\mathrm{ET}_{197} 269^{\circ} \mathrm{C}(68 \%)$ and $\mathrm{ET}_{197} 274{ }^{\circ} \mathrm{C}(26 \%)$ and this mixture was cyclized with acetyl chloride (5.5 ml) for 3 h at $53^{\circ} \mathrm{C}$. The recovered product fractionally crystallized from acetone and then from acetonitrile finally gave the Z, Z anhydride (5) in 8% yield.
(b) For 24 h . Fulgenic acid (7) $(406 \mathrm{mg})$ in acetone (50 ml) was irradiated at 366 nm for 24 h and the recovered mixture treated with acetyl chloride (8 ml) for 30 h at $50^{\circ} \mathrm{C}$ and crystallized from acetone to afford the naphthalenedicarboxylic anhydride $\left[4 ; \mathrm{R}=3,4-(\mathrm{MeO})_{2}\right](64 \mathrm{mg}, 19 \%)$, m.p. $312-314^{\circ} \mathrm{C}$ as before, as the only crystallizable product recovered.

Crystal Data.-Single crystals were examined by standard optical and photographic X-ray methods. Crystals of (6), ${ }^{9,10}$ m.p. $173.5^{\circ} \mathrm{C}$ (lit.,,$^{172-173}{ }^{\circ} \mathrm{C}$), were obtained as welldeveloped ruby hexagonal prisms on slow evaporation of its

Table 2. Crystal data and details of the crystallographic analyses

Compound	(6)	(5)	(8)	Solvate
Formula	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{7}$	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{7}$	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{7}$	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{7} \cdot \mathrm{MeCN}$
$M_{\text {r }}$	396.4	396.4	394.4	437.5
Space group	C2/c	$P 2,{ }_{1}{ }^{2}$	$P 2 . / c$	Pbca
a / \AA	15.507(3)	4.871(2)	13.546(6)	31.634(6)
b / \AA	8.936(1)	27.09(1)	8.141(8)	7.971(3)
c / \AA	14.266(4)	7.268(3)	17.18(1)	17.430(8)
$\beta /{ }^{\circ}$	109.66(2)	-	101.05(6)	-
U / \AA^{3}	1861.7	959.2	1859.3	4395.1
Z	4	2	4	8
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.41	1.37	1.41	1.32
$F(000)$	832	416	824	1840
$\mu\left(\mathrm{Mo}-K_{\mathrm{a}}\right) / \mathrm{cm}^{-1}$	0.64	0.62		0.59
Scan range/ ${ }^{\circ}$	$3 \leqslant \theta \leqslant 25$	$3 \leqslant \theta \leqslant 25$		$3 \leqslant \theta \leqslant 27$
h	$-18 \longrightarrow 18$	$0 \longrightarrow 5$		$0 \longrightarrow 40$
k	$0 \longrightarrow 10$	$0 \longrightarrow 32$		$0 \longrightarrow 10$
l	$0 \longrightarrow 16$	$0 \longrightarrow 8$		$0 \longrightarrow 22$
$I_{\text {obs }}$	1274	1001		2048
Cut-off criterion	$F<3 \sigma(F)$	$F<1 \sigma(F)$		$F<2 \sigma(F)$
Number of parameters	174	152		290
Maximum $\Delta p / \sigma$	0.005	0.05		0.05
Res. density/e \AA^{-3}	0.3	0.24		0.03
R	0.05	0.10		0.07
$R_{\text {w }}$	0.04	0.07		-

Table 3. Fractional co-ordinates ($\times 10^{4}$) for compound (5)

	x	y	z
$\mathrm{O}(1)$	-5000	0	$6837(15)$
$\mathrm{O}(2)$	$-2357(26)$	$645(4)$	$6520(11)$
$\mathrm{O}(3)$	$4755(12)$	$1920(2)$	$1106(8)$
$\mathrm{O}(4)$	$1888(13)$	$1945(2)$	$4086(9)$
$\mathrm{C}(1)$	$-3656(30)$	$354(5)$	$5781(16)$
$\mathrm{C}(2)$	$-4112(17)$	$201(3)$	$3843(12)$
$\mathrm{C}(3)$	$-2784(17)$	$390(3)$	$2346(13)$
$\mathrm{C}(4)$	$-870(22)$	$787(3)$	$2101(12)$
$\mathrm{C}(9)$	$875(23)$	$795(4)$	$516(13)$
$\mathrm{C}(8)$	$2800(17)$	$1141(3)$	$119(13)$
$\mathrm{C}(7)$	$3043(20)$	$1533(3)$	$1373(14)$
$\mathrm{C}(11)$	$6394(18)$	$1931(4)$	$-542(14)$
$\mathrm{C}(6)$	$1458(21)$	$1556(4)$	$2969(13)$
$\mathrm{C}(10)$	$190(24)$	$1993(4)$	$5656(13)$
$\mathrm{C}(5)$	$-391(17)$	$1182(3)$	$3332(14)$

Table 4. Fractional co-ordinates ($\times 10^{4}$) for compound (6)

	x	y	z
$\mathrm{O}(1)$	5000	$10728(3)$	2500
$\mathrm{O}(2)$	$6460(1)$	$10383(2)$	$3466(2)$
$\mathrm{O}(3)$	$4068(1)$	$2844(2)$	$3659(1)$
$\mathrm{O}(4)$	$5438(1)$	$1618(2)$	$4963(2)$
$\mathrm{C}(1)$	$5740(2)$	$9830(3)$	$3015(2)$
$\mathrm{C}(2)$	$5444(2)$	$8256(3)$	$2897(2)$
$\mathrm{C}(3)$	$5945(2)$	$7298(3)$	$3604(2)$
$\mathrm{C}(4)$	$5793(2)$	$5808(3)$	$3911(2)$
$\mathrm{C}(5)$	$4949(2)$	$5051(3)$	$3563(2)$
$\mathrm{C}(6)$	$4854(2)$	$3664(3)$	$3928(2)$
$\mathrm{C}(7)$	$5608(2)$	$2978(3)$	$4655(2)$
$\mathrm{C}(8)$	$6433(2)$	$3716(3)$	$4994(2)$
$\mathrm{C}(9)$	$6518(2)$	$5117(3)$	$4636(2)$
$\mathrm{C}(10)$	$3308(2)$	$3394(5)$	$2855(3)$
$\mathrm{C}(11)$	$6168(3)$	$892(5)$	$5726(3)$

solution in acetone. Diffraction quality crystals were readily selected. Fulgide (5) crystallized in well formed orange plates or flat needles of good quality in ordinary light but showing extensive polycrystalline domain structure in polarized light
and by X-ray diffraction. Isolated crystals, suitable for crystallographic work, could be selected on two occasions from recrystallized material. Both crystals were found to correspond to the Z, Z-isomer (5). Crystals of (8) were obtained as small but well developed platelets by dissolving it (1 mg) in acetonitrile $(100 \mu \mathrm{l})$ and dimethylformamide $(2 \mu \mathrm{l})$ in a sealed tube ${ }^{16}$ ($45 \times 6 \mathrm{~mm}$), briefly heating it to $200^{\circ} \mathrm{C}$, and then keeping it for 17 days while subjecting it to cycles of warming to $80^{\circ} \mathrm{C}$ followed by slow cooling. The crystals were of relatively low quality, suitable for crystallographic characterization, but not for detailed refinement. The identity of polycrystalline (5) and single crystals thereof was established by X-ray powder diffraction. The structure of rotameter (9) was obtained by molecular mechanics calculation, using the program of Boyd ${ }^{17}$ on a CDC Cyber 750 computer. Another unsymmetrical modification, (10), was indicated by similar calculations. Single crystals of (6) obtained from acetonitrile were shown crystallographically to be solvated.

Crystallographic Analysis.-Crystal data and details of the single-crystal analyses of compounds (5), (6), and (8) and solvated (6) are given in Table 2. All measurements were made on a Nonius CAD4 single-crystal diffractometer with an incident beam graphite-crystal monochromator [$\lambda\left(\mathrm{Mo}-K_{\alpha}\right)$ $0.7107 \AA$]. The cell constants were determined by least-squares refinement, based on 25 accurately measured 2θ values in the region $16^{\circ}<\theta<18^{\circ}$. A variable scan speed in $\omega-2 \theta$ mode, adjusted in terms of the intensity during pre-scan, but not exceeding $5.5^{\circ} \mathrm{min}^{-1}$ and not less than 1 min per reflection, was used for all intensity measurements. Background counting times were adjusted accordingly. The scan width for each reflection was calculated as $\omega=(0.6+0.34 \tan \theta)$. The vertical aperture was set at 4.0 mm and the horizontal varied according to the scan width, in the range $1.3-5.9 \mathrm{~mm}$. Intensity checks on three standard reflections were performed each hour to monitor crystal decomposition. None was detected.

Data reduction consisted of correction for background, Lp, and absorption. Absorption corrections were determined empirically ${ }^{18}$ from suitable azimuthal scans of nine independent reflections. The structures were solved by direct methods and refined by full-matrix least-squares, using the program ${ }^{19}$

Table 5. Fractional co-ordinates ($\times 10^{4}$) for solvated compound (6)

	x	y	z
$\mathrm{O}(1)$	$-450(1)$	$-3126(6)$	$6966(3)$
$\mathrm{O}(2)$	$-202(2)$	$-1588(7)$	$7947(2)$
$\mathrm{O}(3)$	$1747(1)$	$-3660(6)$	$5416(2)$
$\mathrm{O}(4)$	$2306(2)$	$-2517(6)$	$6342(2)$
$\mathrm{O}\left(2^{\prime}\right)$	$-538(2)$	$-4426(6)$	$5831(3)$
$\mathrm{O}\left(3^{\prime}\right)$	$1224(1)$	$2184(5)$	$5324(2)$
$\mathrm{O}\left(4^{\prime}\right)$	$1364(1)$	$1764(6)$	$3885(2)$
$\mathrm{C}(1)$	$-142(2)$	$-2172(9)$	$7319(4)$
$\mathrm{C}(2)$	$232(2)$	$-2067(7)$	$6807(3)$
$\mathrm{C}(3)$	$598(2)$	$-1775(6)$	$7150(3)$
$\mathrm{C}(4)$	$1033(2)$	$-1945(7)$	$6914(3)$
$\mathrm{C}(5)$	$1349(2)$	$-1372(7)$	$7417(3)$
$\mathrm{C}(6)$	$1774(2)$	$-1523(8)$	$7241(3)$
$\mathrm{C}(7)$	$1900(2)$	$-2295(8)$	$6570(3)$
$\mathrm{C}(8)$	$1585(2)$	$-2907(7)$	$6059(3)$
$\mathrm{C}(9)$	$1164(2)$	$-2765(7)$	$6230(3)$
$\mathrm{C}(10)$	$1466(2)$	$-3940(8)$	$4777(3)$
$\mathrm{C}(11)$	$2634(2)$	$-1889(10)$	$6824(4)$
$\mathrm{C}\left(1^{\prime}\right)$	$-328(2)$	$-3540(8)$	$6217(4)$
$\mathrm{C}\left(2^{\prime}\right)$	$77(2)$	$-2666(7)$	$6051(3)$
$\mathrm{C}\left(3^{\prime}\right)$	$170(2)$	$-2370(7)$	$5303(3)$
$\mathrm{C}\left(4^{\prime}\right)$	$468(2)$	$-1260(7)$	$4945(3)$
$\mathrm{C}\left(5^{\prime}\right)$	$538(2)$	$-1398(7)$	$4150(3)$
$\mathrm{C}\left(6^{\prime}\right)$	$828(2)$	$-415(7)$	$3777(3)$
$\mathrm{C}\left(7^{\prime}\right)$	$1062(2)$	$746(8)$	$4185(3)$
$\mathrm{C}\left(8^{\prime}\right)$	$987(2)$	$973(7)$	$4988(3)$
$\mathrm{C}\left(9^{\prime}\right)$	$692(2)$	$-26(6)$	$5346(3)$
$\mathrm{C}\left(10^{\prime}\right)$	$1147(2)$	$2530(9)$	$6111(3)$
$\mathrm{C}\left(11^{\prime}\right)$	$1466(2)$	$1564(11)$	$3082(3)$
$\mathrm{C}\left(1^{\prime \prime}\right)$	$2391(3)$	$-171(12)$	$4131(5)$
$\mathrm{C}\left(2^{\prime \prime}\right)$	$2225(3)$	$477(11)$	$4850(4)$
N	$2519(4)$	$-671(12)$	$3578(4)$

Figure 1. Atomic numbering schemes for non-hydrogen atoms. Hydrogen atom numbering follows the carbon atom numbers

SHELX, and a weighting scheme based on counting statistics,

Structure (8), by all criteria, did not refine as well as the others, because of the poorer quality crystal, but converged convincingly to an arrangement, completely commensurate with other evidence, to establish firmly the molecular structure. The refined fractional co-ordinates are in Tables 3-5, according to the atomic numbering schemes in Figure 1. Hydrogen atomic numbering follows the numbering of their associated heavy atoms.*

[^0]Table 6. Details of the force-field: force constants $k / \mathrm{mdyne}^{\AA^{-1}}$ or mdyne $\AA \mathrm{rad}^{-1}$) and characteristic, strain-free parameters for bond (r_{0} / \AA) or angle $\theta_{0} / \mathrm{deg}$) distortions

Bond or angle	k	r_{0} or θ_{0}
$\mathrm{C}-\mathrm{O}($ fur $)$	4.40	1.39
$\mathrm{C}=\mathrm{O}$	7.65	1.19
$\mathrm{C}(1)-\mathrm{C}(2)$	4.40	1.47
$\mathrm{C}(3)-\mathrm{C}(4)$	4.40	1.45
$\mathrm{C}(2)=\mathrm{C}(3)$	6.85	1.35
$\mathrm{C}-\mathrm{C}($ arom. $)$	7.65	1.40
$\mathrm{C}-\mathrm{O}(\mathrm{Me})$	4.40	1.35
$\mathrm{O}-\mathrm{C}(\mathrm{Me})$	4.40	1.43
$\mathrm{H}-\mathrm{C}$	5.00	1.08
$\mathrm{R}-\mathrm{C}\left(s p^{3}\right)-\mathrm{R}^{\prime}$	0.62	109.5
$\mathrm{R}-\mathrm{C}\left(s p^{2}\right)-\mathrm{R}^{\prime}$	0.62	120
$\mathrm{C}-\mathrm{O}-\mathrm{C}$	0.80	109.5
$\mathrm{C}-\mathrm{O}-\mathrm{C}(\mathrm{Me})$	0.80	120
$\mathrm{C}-\mathrm{C}-\mathrm{C}($ arom. $)$	1.00	120
$\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)=\mathrm{C}(3)$	0.62	130
$\mathrm{C}(1)-\mathrm{C}(2)=\mathrm{C}(3)$	0.62	116
$\mathrm{C}(2)=\mathrm{C}(3)-\mathrm{C}(4)$	0.62	128

To establish the identity of the selected single crystal from recrystallized (5) and the bulk material, a powder diffraction pattern was generated by computer methods ${ }^{20}$ from the singlecrystal structure for comparison with the observed powder pattern of bulk (5). The observed pattern recorded on a Rigaku diffractometer, using $\mathrm{Cu}-K_{\alpha}$ radiation, agreed in detail with the calculated, confirming the identities of the single-crystal and bulk materials.

Molecular Mechanics.-Crystallization of the E,E-isomer invariably affords compound (6) although n.m.r. analysis indicates the existence in solution of another symmetrical rotamer like (9) accessible by rotation around single bonds which was monitored by molecular mechanics. The reliability of molecular mechanics predictions of configurations depends on the relevance of the force-field, rather than its theoretical basis. A force-field defined from first chemical principles could thus be less appropriate than an empirical force-field adapted to the same type of structure. In the present application an empirical force-field was parametrized against the criterion of correctly predicting the crystallographic structure of (6). However, trial values of harmonic force constants and strain-free bond parameters (k, p_{0}) were adapted within chemical reason and should be relevant to the interpretation of electronic bond orders. ${ }^{21}$ Numerical detail of the force-field is in Table 6. Currently accepted non-bonded potentials were used without modification.

Free rotations that could produce different rotamers of (6) are possible around carbon bonds $C(3)-C(4)$ and $C\left(3^{\prime}\right)-C\left(4^{\prime}\right)$ only. Whereas these rotations do not preserve the two-fold symmetry of (6), a limited rotation or flipping around $\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$ does. It is noted that symmetrical rotamers obtained by the $\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$ flip are also accessible by rotations around both $\mathrm{C}(3)-\mathrm{C}(4)$ and $\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$, but compared to the $\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$ flip this latter is less convenient for the sampling of all symmetrical forms. The configurational flip with conservation of symmetry requires simultaneous rotations around the bonds $\mathrm{C}(3)-\mathrm{C}(4), \mathrm{C}(2)-$ $\mathrm{C}\left(2^{\prime}\right)$, and $\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$. The corresponding torsion angles in the observed structure are $-10^{\circ},-40^{\circ}$, and -10°, respectively. If it flips to an enantiometric arrangement at $10^{\circ}, 40^{\circ}, 10^{\circ}$, over a transition state of $-90^{\circ}, 0^{\circ},-90^{\circ}$, rotations of $-160^{\circ}, 80^{\circ}$, and -160°, respectively, are involved. The first rotation should therefore be driven at twice the rate of the second and in an opposite sense.

(5)

Solvate (6)

(6)

(8)

Figure 2. Stereoscopic drawings illustrating the three-dimensional molecular structures of (6), (5), and (8) as obtained crystallographically

Symmetrical (5), Z, Z and unsymmetrical [precursor to (8)] E, Z open structures arise from forced rotations around $\mathrm{C}(2)=\mathrm{C}(3)$ double bonds. These rotations have not been examined by molecular mechanics. Barriers to single-bond rotation were calculated by replacing the standard torsional parameter by an artificial incremental parameter ${ }^{17}$ to drive the rotation around the bond, sampling the equilibrium steric strain at each position.

Table 7. Comparison of the anhydride configurations in the X-ray structures of (6), (5), and (8). The angles φ are endocyclic torsion angles in degrees. χ and Q represent puckering mode and amplitude in degrees and \AA, respectively

Compound	(6)	(5)	(8)
$\varphi[\mathrm{O}(1)-\mathrm{C}(1)]$	-4.8	-1.1	-2.2
$\varphi[\mathrm{C}(1)-\mathrm{C}(2)]$	12.4	2.5	5.7
$\varphi\left[\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)\right]$	-14.6	-3.0	-1.6
χ	90.0	90.0	94.8
Q	0.14	0.06	0.03
Conformation	${ }_{4}^{3} T$	${ }_{4}^{3} T$	${ }_{4}^{3} T$

Results and Discussion

Crystallographic and molecular mechanics results established the number of possible rotamers as five, viz. three symmetrical and two unsymmetrical forms. The unsymmetrical open form, however, is unstable and readily dehydrogenates to form a naphthalene structure.

X-Ray Structures.-Two of the symmetrical forms were studied in detail by X-ray diffraction. In both structures, (5) and (6), a two-fold axis, through $\mathrm{O}(1)$ and bisecting $\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$, relates the two halves of the molecule. In addition, the dehydrogenation product (8) of the unsymmetrical open form has also been studied.
Stereoscopic drawings of the three X-ray structures of (5), (6), and (8) are shown in Figure 2. Comparison of the anhydride conformations in the three forms provides an interesting measure of the relative steric strain for each case. A comparison, both in terms of puckering parameters ${ }^{22}$ and endocyclic torsion angles, is made in Table 7. It clearly indicates (6) as the sterically most strained form. The strain originates from eclipsing of the aryl rings. In the Z, Z-form (5) the nonbonded repulsion is eliminated by separation of the rings and in (8) by the formation of a naphthalene structure. The observed difference in density of the two forms probably relates to the eclipsed and open nature of structures (6) and (5), respectively.
The molecular structures of the two crystalline modifications of (6) correspond in detail. The major difference between the solvated and unsolvated forms is the lack of crystallographic symmetry for the former, compared with a molecular two-fold axis in the latter. Most molecular parameters are therefore sampled three times in the two structure analyses. The independent measurements of important parameters are compared in Table 8. The two sets for the solvate are related by a non-crystallographic two-fold axis.
The force-field simulation of (6) is also examined in Table 8. The conformationally important parameters agree well with the observed, the only important differences occurring in the anhydride ring and the methoxy groups. The simulated anhydride ring is somewhat less puckered than the observed. The largest discrepancy is in the endocyclic torsion angle at the central bond, observed as -15.5 and simulated at -2.6°. The conformational type of the two forms however is the same. The methoxy groups are observed and simulated in the aromatic plane. The striking difference of observed $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles on opposite sides of the $\mathrm{C}-\mathrm{O}$ bond is not correctly simulated. This reflects a definite electronic effect not accounted for by the forcefield. This difference between inner and outer methoxy angles appears to be a general feature ${ }^{23,24}$ of methoxy groups coplanar with aromatic rings because of conjugation between the substituent p-type lone-pair orbital and the aromatic system. The orientation of the methoxy methyl groups is not modelled well at all due, in part, to the variability of the observed

Table 8. Comparison of parameters in compounds (6) and solvate (6)

Parameter	Unsolvated (6)	Solvated form		MM
		Unique set	Related set	
$\mathrm{O}(1)-\mathrm{C}(1)$	1.39	1.40	1.38	1.40
$\mathrm{O}(2)-\mathrm{C}(1)$	1.19	1.18	1.20	1.20
$\mathrm{C}(1)-\mathrm{C}(2)$	1.47	1.49	1.48	1.48
$\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	1.46	1.48	-	1.46
C(2)-C(3)	1.35	1.36	1.32	1.36
$\mathrm{C}(3)-\mathrm{C}(4)$	1.45	1.44	1.44	1.46
$\mathrm{Av}(\mathrm{C}-\mathrm{C})$ arom.	1.39	1.39	1.40	1.41
$\mathrm{Av}(\mathrm{C}-\mathrm{O})$ meth.	1.36	1.36	1.37	1.37
$\mathrm{Av}\left(\mathrm{O}-\mathrm{CH}_{3}\right)$	1.44	1.44	1.43	1.44
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}-\mathrm{C}(1)$	109.5	110.5	-	110.2
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	120.2	121.2	120.6	122.3
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	108.8	108.0	109.0	108.4
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	131.1	130.9	130.4	129.2
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	105.4	105.2	104.6	106.3
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	116.2	117.1	115.8	118.6
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(2)-\mathrm{C}(3)$	137.3	136.5	138.3	132.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	134.3	131.8	133.6	129.1
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	124.3	123.3	124.1	123.0
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	117.5	118.9	118.0	117.8
Av (C-C-C) arom.	120.0	120.0	120.0	120.0
Av (O-C-C) outer	125.4	125.9	125.4	119.8
$\mathrm{Av}(\mathrm{O}-\mathrm{C}-\mathrm{C})$ inner	114.9	114.8	114.7	121.0
Av (C-O-C) meth.	117.5	117.6	118.1	122.3
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-4.9	-4.9	-5.9	-2.2
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	12.7	13.4	14.0	3.0
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	21.5	23.0	24.1	15.0
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	-15.1	-16.2	-	-2.6
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(2)-\mathrm{C}(3)$	-42.0	-44.5	-	-41.7
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-2.6	-1.7	0.0	-2.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-8.7	-9.8	-10.1	-15.4
$\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$	0.0	0.0	1.1	-0.6
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{O}(4)-\mathrm{C}(11)$	1.8	-4.0	-0.9	-15.4
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{C}(10)$	7.3	-3.4	17.1	-16.7

Figure 3. Summary of observed bond angles around the five-numbered ring of (6)
$\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$ torsion angles. This is probably due to reorientations sensitive to packing energy.

The aryl rings in (6) are not parallel, having their plane normals inclined at an angle of 50°. No unusual bond lengths were observed, but the bond angles at the olefinic trigonal carbon atoms, as shown in Figure 3, are noteworthy. In order to keep $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$ close to the 108° required for a planar pentagon, the external angle $\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(2)-\mathrm{C}(3)$ opens up to 137°. For the same reason the angle $O(2)-C(1)-C(2)$ is found to be 131°. The opening of $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ to 134° occurs for less obvious reasons. It is noted that the reason why the bonds $O(2)=C(1)$ and $C(3)=C(2)$ do not bisect the external ring angles is not entirely of steric origin.

Simulated Structures.-The empirical force-field adapted to reproduce structure (6) was assumed to be appropriate for all rotamers of this compound and for modelling barriers to rotation. Steric energy as a function of an aryl ring rotation is

Figure 4. Steric energy of (6) as a function of the rotation of an aryl ring. The potential barrier represents the transition from (6) to (10)
shown in Figure 4. A barrier of about $64 \mathrm{~kJ} \mathrm{~mol}^{-1}$ separates (6) from an energetically almost equivalent but unsymmetrical form (10), reached after rotation through 180°. This structure, shown stereoscopically in Figure 5, has not been observed in the course of these experiments. This is interpreted to indicate that rotation is restricted by this barrier in the experimental temperature range and that the integrity of the five-membered ring may not be affected in the chromatography step.

The only other possible rotation is around the central bond,

Figure 5. Stereoscopic drawings of the structure (10), obtained by rotation of an aryl ring in (6) by 180°

Figure 6. Steric energy profile of rotation around the central $\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$ bond in (6), coupled with appropriate relaxation through rotations around the $\mathrm{C}(3)-\mathrm{C}(4)$ bonds

Figure 7. Stereoscopic drawing of structure (9) as obtained by molecular mechanics calculation consisting of limited rotation or flip around $\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$ starting from structure (6)

Table 9. Calculated orthogonalized atomic co-ordinates for compound (9)

	x	y	z
O(1)	6.55418	9.58654	3.35880
$\mathrm{O}(2)$	4.67682	9.23675	2.10140
$\mathrm{O}(3)$	3.63142	1.73977	2.58194
$\mathrm{O}(4)$	4.84793	1.24396	5.08806
$\mathrm{O}\left(2^{\prime}\right)$	8.40276	9.23686	4.65664
$\mathrm{O}\left(3^{\prime}\right)$	9.13058	1.66606	4.47623
$\mathrm{O}\left(4^{\prime}\right)$	7.88533	1.12066	1.99559
$\mathrm{C}(1)$	5.60571	8.78441	2.70497
C(2)	5.93603	7.36937	2.97665
C(3)	4.99420	6.40652	2.77567
C(4)	4.87434	5.11459	3.44545
C(5)	4.24525	4.06333	2.76227
C(6)	4.22059	2.75649	3.29156
C(7)	4.83012	2.50491	4.54594
C(8)	5.43787	3.57092	5.23672
C(9)	5.45875	4.86174	4.69438
C(10)	3.02892	1.95049	1.29104
C(11)	5.47249	0.95568	6.35370
C(1')	7.47564	8.78409	4.05072
$\mathrm{C}\left(2^{\prime}\right)$	7.12474	7.36746	3.81167
$\mathrm{C}\left(3^{\prime}\right)$	8.03422	6.38503	4.06293
$\mathrm{C}\left(4^{\prime}\right)$	8.08673	5.06149	3.44861
$\mathrm{C}\left(5^{\prime}\right)$	8.65497	4.00966	4.18204
$\mathrm{C}\left(6^{\prime}\right)$	8.60332	2.67988	3.71582
C(7^{\prime})	7.97967	2.40423	2.47348
C(8)	7.43935	3.47036	1.72878
$\mathrm{C}\left(9^{\prime}\right)$	7.49882	4.78545	2.20618
$\mathrm{C}\left(10^{\prime}\right)$	9.73936	1.90443	5.75923
C(11')	7.24626	0.81224	0.74683
H(3)	4.03153	6.72301	2.40736
H(5)	3.82549	4.27115	1.79061
H(8)	5.91931	3.41886	6.19034
H(9)	5.95610	5.64381	5.24432
H(101)	3.69959	2.31552	0.52571
H(102)	2.20643	2.65178	1.27673
H(103)	2.60387	1.06399	0.84133
H(111)	5.42113	-0.08075	6.65682
H(112)	6.52983	1.17445	6.40593
H(113)	5.05453	1.48022	7.20159
H(3')	8.98592	6.70471	4.45522
H(5')	9.08388	4.23827	5.14494
$\mathrm{H}\left(8^{\prime}\right)$	6.95028	3.30168	0.78186
H(9')	7.05283	5.56864	1.61528
H(101')	9.12013	2.35115	6.52450
H(102')	10.61058	2.54390	5.73383
H(103')	10.10892	1.01336	6.24738
H(111)	7.23267	-0.23883	0.49419
H(112')	6.20458	1.09369	0.68056
H(113')	7.69662	1.26769	-0.124 18

opposite the furyl oxygen atom. The steric energy profile for this rotation coupled with appropriate rotations around the $C(3)-C(4)$ single bonds is presented in Figure 6. Minimumenergy arrangements are predicted at angles of about -30° and $+20^{\circ}$ of the torsion angle (3-2-2'-3), with a maximum near -10°. The potential barrier is about $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$, low enough to allow interconversion between (6) and (9). Cartesian atomic co-ordinates for the simulated structure (9) are in Table 9. It is suggested that a similar interconversion between the unsymmetrical structure and its enantiomer is possible.
The most interesting feature of structure (9) shown stereoscopically in Figure 7 is the nearly equivalent disposition of the methoxy groups, with respect to the eclipsing benzene rings, as illustrated by the perspective drawing in Figure 8. It is of further interest to note that rotamer (9) is calculated to be more stable than (6) by $c a .20 \mathrm{~kJ} \mathrm{~mol}^{-1}$, although only (6) seems to occur in the crystalline state. These two factors are probably related. In

(6)

(9)

Figure 8. Perspective drawing of stereoisomer (6) and of the stereoisomer (9) generated by flipping (6) about the central bond in the five-membered ring, showing the nearly equivalent disposition of the methoxy groups in (9)

Figure 9. Stereoscopic packing diagram showing the unit cell of (6)
the crystal, neighbouring molecules pack in a head-to-tail fashion with major intermolecular contact between the parallel aryl rings, as shown in the packing diagram of Figure 9. The intermolecular π-interactions benefit from the way in which the methoxy groups lie on the outside of the overlapping aromatic rings. If, because of its different conformation, this efficient mode of packing is not possible between molecules of (9), it could explain why crystals of (6) have the lower lattice energy. The major conformational difference that could affect the packing is in the torsion angles $C(2)-C(3)-C(4)-C(5)$, calculated at $c a$. -30 and -115° for isolated molecules of (6) and (9) respectively. The former represents a flatter type of molecule that should pack together more smoothly than the more angular type of molecule (9), which in turn has its aryl rings more closely in parallel alignment. The major n.m.r. solution signal could therefore quite possibly represent molecule (9), which on crystallization transforms into (6).

Some features of the force-field required for the simulation of the eclipsed structures deserve comment. According to Table 6 accepted values of bond lengths and angles are not adequate everywhere, particularly not around the double bonds to the five-membered ring. Although no adjustment of force constant was attempted during parametrization, the reference values r_{0} and θ_{0} for bonds in this vicinity clearly indicate extensive delocalization around the conjugated system $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)-$ $\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$ and $\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-$ etc. The $\mathrm{O}(2)-\mathrm{C}(1)-$ $\mathrm{C}(2)$ bond angle of 131°, however, results from a simple steric effect. One important consequence of the delocalization would be lowering of the barrier to rotation around the formal double bonds, thus promoting conversion into E, Z - and Z, Z-isomers. The methoxy groups were modelled to be co-planar with the aromatic rings, as suggested by Anderson et al., ${ }^{23}$ and as observed for all the structures reported here, and elsewhere. ${ }^{24}$

Conclusion

Bis-(3,4-dimethoxybenzylidene)succinic acid forms an anhydride (6) with eclipsed benzene rings related by a molecular two-fold axis. The close eclipsing inhibits free rotation of the
aryl rings by $65 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and unsymmetrical rotamers of (6) have never been identified. The five-membered rings in both simulated structures, (9) and (10), are markedly more planar and the eclipsed aryl rings more parallel, compared with the observed structure, (6). The reason for this becomes obvious on inspection of the different three-dimensional structures. In (6) the para-methoxy groups are both directed inwards at each other, whereas all methoxy groups in (9) and (10) are directed away from each other. This allows parallel alignment of the aryl rings and relaxation of the strain in the furyl rings.

The chain, $C(9)-C(4)-C(3)-C(2)-C\left(2^{\prime}\right)-C\left(3^{\prime}\right)-C\left(4^{\prime}\right)-C\left(9^{\prime}\right)$ is chiral due to a helical conformation. Compound (6) is formed as a racemic mixture and in the crystal (space group $C 2 / c$) both left- and right-handed forms are present. The chirality is reversed by flipping about the central $\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$ single bond in the furan ring across a potential barrier of $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The resulting rotamer (9) is not the enantiomer of (6) since the flipping also changes the relative disposition of the methoxy groups. The pair of rotamers, (6) and (9) can be converted into the enantiomeric pair by 180° rotation of both aryl rings around their connecting single bonds. Rotation of one of the aryl rings only, results in the unsymmetrical eclipsed form that flips into its enantiomer by limited rotation around the central bond, as before. Chirality is lost during forced rotation of an aryl group around a double bond. Rotation of one group produces an unstable E, Z-isomer that readily dehydrogenates to form an aromatic ring, by closure of an already extensively delocalized system. Rotation of both groups produces the unstrained open structure of the Z, Z-isomer. It is suspected that the formation of unsymmetrical E, E-rotamers is prevented by steric factors. This will be the topic of a further study.

Acknowledgements

We thank the foundation for Research Development for comprehensive support, the Council of Scientific and Industrial Research for spectra and computing facilities, Dr. P. R. Boshoff, Mrs. S. Heiss, and Dr. R. J. Highet (N.I.H., Bethesda, MD) for spectra, and Mrs. C. C. Allen and Miss M. D. Madiope for the computer drawings and general assistance.

References

1 H. Stobbe, Justus Liebig's Ann. Chem., 1911, 380, 1.
2 H. Stobbe, Justus Liebig's Ann. Chem., 1911, 380, 17.
3 H. Stobbe, Justus Liebig's Ann. Chem., 1908, 359, 1; cf. H.-D. Ilge and R. Paetzold, Z. Chem., 1983, 23, 221, and K. Gustav, J. Sühnel, W. Weinrich, and R. Paetzold, ibid., 1979, 19, 219.
4 H. Stobbe, Ber. Deutsch. Chem. Ges., 1907, 40, 3372; F. G. Baddar, E. H. Ghaly, and M. F. El-Neweihy, J. Chem. Soc., 1961, 2528 and references therein.
5 H. Stobbe and K. Leuner, Justus Liebig's Ann. Chem., 1911, 380, 75.
6 Particularly by H. G. Heller et al., e.g. O. Crescente, H. G. Heller, and S. Oliver, J. Chem. Soc., Perkin Trans. 1, 1979, 150.

7 M. D. Cohen, H. W. Kaufman, D. Sinnreich, and G. M. J. Schmidt, J. Chem. Soc. B, 1970, 1035.
8 J. C. A. Boeyens, L. Denner, and G. W. Perold, J. Chem. Soc., Perkin Trans. 2, in the press.
9 H. Stobbe and K. Leuner, Justus Liebig's Ann. Chem., 1911, 380, 75.
10 P. R. Boshoff and G. W. Perold, J. Chem. Res., 1986, (S), 80; (M), 0735.
11 E. L. Eliel, 'Stereochemistry of Carbon Compounds,' McGraw-Hill, New York, 1962, 330.
12 J. C. A. Boeyens, L. Denner, and G. W. Perold, S. Afr. J. Chem., 1987, 40, 44.
13 H. O. House and J. K. Larson, J. Org. Chem., 1968, 33, 448.
14 J. Lebbe, in J. Tranchant (ed.), 'Practical Manual of Gas Chromatography,' Elsevier, London, 1969, 264.
15 F. G. Baddar, H. A. Fahim, and M. A. Galaby, J. Chem. Soc., 1955, 465.
16 J. C. A. Boeyens, M. U. Naude, and G. W. Perold, S. Afr. J. Chem., 1982, 35, 157.
17 R. H. Boyd, J. Chem. Phys., 1968, 49, 2574.

18 A. C. T. North, D. C. Phillips, and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.
19 G. M. Sheldrick in H. Schenk, (ed.), 'Computing in Crystallography', University Press, Delft, 1978.
20 K. Yvon, W. Jenteschko, and I. Parthé, J. Appl. Crystallogr., 1977, 10, 73.

21 J. C. A. Boeyens, F. A. Cotton, and S. Han, Inorg. Chem., 1985, 24, 1750.

22 D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1358.
23 G. M. Anderson, P. A. Kollman, L. N. Domelsmith, and K. N. Houk, J. Am. Chem. Soc., 1979, 101, 2344.

24 I. L. Karle, J. L. Flippen-Anderson, J. F. Chiang, and A. H. Lowrey, Acta Crystallogr., Sect. B, 1984, 40, 500.

Received 7th July 1987; Paper 7/1219

[^0]: * Supplementary data (see section 5.6 .3 of Instructions for Authors, in the January issue). Lists of bond lengths and angles, thermal parameters, and H-atom co-ordinates have been deposited at the Cambridge Crystallographic Data centre.

